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Abstract

In this thesis we present our work on iterated function systems.
The fractal theory, by its power to model objects having a complicated

structure, is an extension of the classic geometry. Some exotic objects, like
the triadic Cantor set, Koch curve and graph of Weierstrass function, which
are on the other side of ordinary imagination, produced a huge impact in the
mathematical community. B. Mandelbrot noted some common features of
these mathematical object and observed that certain phenomenon from real
world can be described using them, founding in this way the fractal theory.
A new era of this theory began once an image of a fractal was obtained by
means of a computer. Immediately engineers and physics, economic, biology
researchers got interested on this topic.

One of the most common and popular framework for self-similar frac-
tals is the theory of iterated function systems which was initiated by J.
Hutchinson (see also the work of P. Moran) in his seminal paper entitled
Fractals and self similarity published in Indiana University Mathematics
Journal, in 1981, where he discussed the notion of self-similarity. A set 
is self-similar if it is made up of a …nite transformed copies of itself. More
precisely, given a complete metric space () and a …nite family of con-
tractions 1 2   :  ! , the unique non-empty compact subset  of

 having the property that  =

[
=1

() is called a self-similar fractal (or

the attractor of the iterated function system (() fg2f12g)). This
concept, which was popularized by Michael Barnsley, especially by his fa-
mous book Fractals everywhere, received much attention in recent years in
connection with the study of fractals.

Since it is possible to approximate any compact subset in the space
 by an attractor of some iterated function system, it is natural to ask
the following question: which compact sets can be realized as attractors
of iterated function systems. An example repertory starts with simple sets
such as an interval, a square, the closure of the unit disc and continues with
more exotic sets such as the Cantor ternary set, the Sierpinski gasket, the
Menger sponge, the Black Spleenwort fern, the Barnsley fern, the Castle
fractal, the Julia sets of quadratic transformations, the Koch curve, the
Polya’s curve, the Levy’s curve or the Takagi graph. At the same time, it is
a natural question to ask whether it is true that any compact set is actually
the invariant set of some iterated function system. The answer is no. For
example, L. Stacho and L. Szabo constructed compact sets in R that are
not invariant sets for any iterated function system.
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One can …nd self similar sets almost everywhere in the universe: galax-
ies, clouds, coastlines and borderlines, landscapes, human anatomy, chemical
reactions, bacteria cultures, plants, data compression, market price ‡uctua-
tion. Because of the variety of the applications of iterated function systems
in the last years, there is a current e¤ort to extend Hutchinson’s classical
framework for fractals to more general contractions and to possibly in…nite
iterated function systems.

After I obtained the Ph. D. title in 1999, my scienti…c interest was focus
on iterated function systems. The purpose of this thesis is the presentation
of the results that I have obtained on this topic. They can be grouped in two
main thematic parts, namely the contributions to the theory of …nite iterated
function systems (contained in the …rst three chapters) and the contributions
to the theory of in…nite iterated function systems (contained in the next two
chapters), which are detailed in the sequel. Let us mention that another
way to generate fractal sets is due to Gaston Julia and Pierre Fatou who
studied the iterations of rational functions on the Riemann sphere. It is not
our goal to discuss this topic in the present thesis.

Chapter I is dedicated to the contributions of the author of this thesis
to the classical theory of (…nite) iterated function systems.

In Section I.2 we recall basic de…nitions and well-known facts from the
classical theory of iterated function systems (for short IFS).

In Section I.3 we establish a connection between the theory of compact
operators and the theory of iterated function systems. First we present a
family of IFSs whose attractors are not connected and then, in contrast to
the known characterizations of the compact operators which are con…ned to
the framework of the functional analysis, we present such a characterization
by means of the non-connectedness of the attractors of a family of IFSs
related to the considered operators.

In Section I.4 we present an approximation result concerning fractals
generated by an iterated function system in the in…nite dimensional space of
continuous functions on a compact interval. More precisely, we approximate
the fractal via a …nite approximant set and project this approximant set in
two dimensions, in order to "draw" a picture of it.

Chapter II is devoted to the contributions of the author of this thesis
to the study of generalization of …nite iterated function systems.

Given a metric space (), the idea of our generalization of the notion

of an IFS is to consider contractions from  =

£
=1

 to , rather than

contractions from  to itself. We call such an object a generalized iterated
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function system (for short GIFS), or, more accurately, a generalized iterated
function system on  of order  (for short GIFS).

In Section II.2 we recall basic de…nitions and well-known facts concern-
ing generalized contractions. We also introduce the concept of GIFS, which
is a …nite family of Edelstein contractions  :  ! , where () is a
metric space and   2 N,  2 f1 2  g.

In Section II.3 , using some …xed points theorem for Edelstein contrac-
tions from  to , we prove, in case that () is a compact metric
space and the functions  are Edelstein contractions, the existence and the
uniqueness of the attractor of such a GIFS.

Section II.4 treats the case that () is a complete metric space and
the functions  are Lipschitz contractions. We prove, in this framework, the
existence and the uniqueness of the attractor of such a GIFS and explore its
properties (among them we give an upper bound for the Hausdor¤-Pompeiu
distance between the attractors of two such GIFSs and an upper bound for
the Hausdor¤-Pompeiu distance between the attractors of such a GIFS and
an arbitrary compact subset of ). Finally we present an example showing
that the notion of GIFS is a natural generalization of the notion of IFS.

In Chapter III we present the contributions of the author of this thesis
to the generalization of the notion of Hutchinson measure.

In Section III.2 we recall basic de…nitions and well-known facts concern-
ing Lipschitz functions, generalized contractions, generalized iterated func-
tion systems, the Monge-Kantorovich metric and iterated function systems
with probabilities.

The Hutchinson measure is the invariant measure associated with an
iterated function system with probabilities. Given a metric space ( ),
generalized iterated function systems on  of order 2 (G2IFS) are gen-
eralizations of iterated function systems which are obtained by considering
contractions from £ to  , rather than contractions from a metric space
 to itself. Along the lines of this generalization we consider generalized it-
erated function systems with probabilities (GIFSp) and generalized iterated
function systems with place dependent probabilities (GIFSpdp).

In Section III.3 we prove the existence and the uniqueness of an analogue
of Hutchinson measure associated to a GIFSp. Moreover we show that the
support of such a measure is the attractor of the GIFSp and we construct a
sequence of measures converging, in the Monge-Kantorovich metric, to this
measure.

In Section III.4 we provide su¢cient conditions under which the Markov
operator associated to a GIFSpdp is Lipschitz. We also prove, under certain
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conditions, the existence and the uniqueness of an analogue of Hutchinson
measure associated to a GIFSpdp. We show that the support of such a
measure is the attractor of the generalized iterated function system, we
construct a sequence of measures converging, in the Monge-Kantorovich
metric, to this measure and we give an estimation of the convergence’s speed
of the sequence.

Chapter IV contains the contributions of the author of this thesis to the
theory of possibly in…nite iterated function systems comprising three main
topics, namely: i) the study of the shift space of a possibly in…nite iterated
function system; ii) some connections between the attractor of a possibly
in…nite iterated function system S and the attractors of the sub-IFSs of S;
iii) alternative characterizations of hyperbolic a¢ne possibly in…nite iterated
function systems.

In Section IV.2 we recall basic de…nitions and well-known facts concern-
ing Hausdor¤-Pompeiu semidistance, possibly in…nite iterated function sys-
tems (for short IIFS), shift space associated to an IIFS, comparison functions
and -contractions. We also introduce the notion of a¢ne possibly in…nite
iterated function system (AIIFS for short), de…ne its attractor and we men-
tion what does it mean that such a system is hyperbolic, -hyperbolic, point-
…bered, uniformly point-…bered, strictly topologically contractive, topologi-
cally contractive.

In Section IV.3 we present a generalization of the notion of the shift
space associated to an IFS. More precisely, we describe the relation between
this space and the attractor of the IIFS. We construct a canonical projection
(which turns out to be continuous) from the shift space of an IIFS on its
attractor and provide su¢cient conditions for this function to be onto.

Section IV.4 is devoted to the presentation of some connections between
the attractor of an IIFS S and the attractors of the sub-IFSs of S. More
precisely, we present a su¢cient condition on a family ()2 of nonempty
subsets of , where S = ( ()2) is an IIFS, in order to have the equality
[
2

 = , where  means the attractor of the S and  means the

attractor of the sub-IFS S = ( ()2) of S. In addition, we prove that
given an arbitrary in…nite cardinal number A and a complete metric space
(), if the attractor of an IIFS S = ( ()2) is of type A (this means
that there exists a dense subset of it having the cardinal less or equal to
A), then there exists S = ( ()2), a sub-IFS of S, having the property
that () · A, such that the attractors of S and S coincide.

In Section IV.5 we prove that if S = (( kk) ()2) is an a¢ne pos-
sibly in…nite iterated function system, then the following statements are
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equivalent: 1. S is hyperbolic; 2. there exists a comparison function 0 such
that S is 0-hyperbolic; 3. S has an attractor; 4. S is strictly topolog-
ically contractive; 5. S is uniformly point-…bered. It generalized a result
due to R. Atkins, M. Barnsley, A. Vince and D.C. Wilson where the case
( kk) = (R kk) and  …nite is considered.

S.L. Lipscomb introduced the space () and J. C. Perry and Lipscomb
proved that the Lipscomb’s space () on an arbitrary index set  can be
imbedded in Hilbert’s space 2(), showing that () can be endowed with
the metric inherited from 2(). Perry showed that () can be injected
into the Tychno¤’s cube  and the imbedded version of () is a subset of
a standard jj-simplex ¢ which is both a subspace of 2() and a subset of
Tychno¤’s cube . Let  be the imbedded version of () endowed with
the 2()-induced topology and let  denote the space whose underlying
set is that of  but whose topology is induced from the Tychno¤’s cube
. Perry showed that 

 is the attractor of a possibly in…nite iterated
function system containing a¢ne transformations of . He mentions that
it is an open problem to construct  as the attractor of an iterated function
system containing an in…nite number of a¢ne transformations of 2().

Chapter V answers the above mentioned question.
In Section V.2 we present the Lipscomb space ().
In Section V.3 we show how to construct  as the attractor of a possibly

in…nite iterated function system containing a¢ne transformations of 2().
In this way we answered the open question of Perry.

In Section V.4, by using the results concerning the shift space for an
in…nite IFS presented in Section IV.3, we show that, for an in…nite set ,
the embedded version of () in (),  2 [11), with the metric induced
from (), denoted by 

 , is the attractor of a possibly in…nite iterated
function system comprising a¢ne transformations of (). In this way we
provide a generalization of the positive answer that we gave to the open
problem of Perry.

In Section V.5 we point out that 
 = 

 for all   2 [11) and, by
providing a complete description of the convergent sequences from 

 , we
prove that the topological structure of 

 is independent of .

Chapter VI, the last one, presents some future plans regarding our
professional and scienti…c career. It describes the following:

a) the research directions that I intend to follow, namely:
As short term research projects:
i) the study of new aspects of the connections between the attractor of

a possibly in…nite iterated function systems, sub-attractors of such a system
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and type  sets;
ii) the study of a question of A. Kameyama on the existence of a

self-similar metric on a topological self-similar set;
iii) the search for a su¢cient condition for a …nite family of continuous

functions on a metric space to be transformed into -contractions.
As long term research project:
iv) invariant vector measures.

b) the topics that I would like to teach, attracting in this way the students
to the study of iterated function systems.

c) a new version of the book entitled "Lipschitz functions" which ap-
peared in 2002 at the Romanian Academy Publishing House.

As a …nal consideration about the structure of this thesis, I should men-
tion that most results are presented without proofs, but, in order to have a
deeper inside, I presented also some sketches of proofs (indicated by Proof)
which can illustrate better some ideas.
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